
E04 – Minimizing or Maximizing a Function

E04DGF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

Note. This routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Section 1 to Section 9 of this document. Refer to the additional Section 10 and Section 11 for
a description of the algorithm and the specification of the optional parameters.

Warning: the specification of the optional parameter Maximum Step Length changed at Mark 16.

1 Purpose

E04DGF minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,
limited memory quasi-Newton conjugate gradient method. First derivatives (or an ‘acceptable’ finite
difference approximation to them) are required. It is intended for use on large scale problems.

2 Specification

SUBROUTINE E04DGF(OBJFUN, ITER, OBJF, OBJGRD, X, IWORK, WORK,
1 IUSER, USER, IFAIL)
INTEGER ITER, IWORK(N+1), IUSER(∗), IFAIL
real OBJF, OBJGRD(N), X(N), WORK(13∗N), USER(∗)
EXTERNAL OBJFUN

3 Description

E04DGF is designed to solve unconstrained minimization problems of the form

minimize
x∈Rn

F (x), subject to −∞ ≤ x ≤ ∞,

where x is an n element vector.

The user must supply an initial estimate of the solution.

For maximum reliability, it is preferable to provide all first partial derivatives. If all of the derivatives
cannot be provided, users are recommended to obtain approximate values (using finite differences) by
calling E04XAF from within OBJFUN. This is illustrated in Section 9 of the document for E04DJF.

The method used by E04DGF is described in Section 10.

4 References

[1] Gill P E and Murray W (1979) Conjugate-gradient methods for large-scale nonlinear optimization
Technical Report SOL 79–15 Department of Operations Research, Stanford University

[2] Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

5 Parameters

1: N — INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

[NP3390/19/pdf] E04DGF.1

E04DGF E04 – Minimizing or Maximizing a Function

2: OBJFUN — SUBROUTINE, supplied by the user. External Procedure

On exit: the number of iterations performed.

Its specification is:

SUBROUTINE OBJFUN(MODE, N, X, OBJF, OBJGRD, NSTATE, IUSER, USER)
INTEGER MODE, N, NSTATE, IUSER(∗)
real X(N), OBJF, OBJGRD(N), USER(∗)

1: MODE — INTEGER Input/Output
On entry: MODE indicates which values must be assigned during each call of OBJFUN. Only
the following values need be assigned:

if MODE = 0, OBJF;

if MODE = 2, OBJF and OBJGRD.

On exit: MODE may be set to a negative value if the user wishes to terminate the solution to
the current problem, and in this case E04DGF will terminate with IFAIL set to MODE.

2: N — INTEGER Input
On entry: n, the number of variables.

3: X(N) — real array Input
On entry: x, the vector of variables at which the objective function and its gradient are to be
evaluated.

4: OBJF — real Output
On exit: the value of the objective function at x.

5: OBJGRD(N) — real array Output
On exit: if MODE = 2, OBJGRD(i) must contain the value of ∂F

∂xi
evaluated at x, for

i = 1, 2, . . . , n.

6: NSTATE — INTEGER Input
On entry: NSTATE will be 1 on the first call of OBJFUN by E04DGF, and 0 for all subsequent
calls. Thus, if the user wishes, NSTATE may be tested within OBJFUN in order to perform
certain calculations once only. For example, the user may read data or initialise COMMON
blocks when NSTATE = 1.

7: IUSER(∗) — INTEGER array User Workspace
8: USER(∗) — real array User Workspace

OBJFUN is called from E04DGF with the parameters IUSER and USER as supplied to
E04DGF. The user is free to use arrays IUSER and USER to supply information to OBJFUN
as an alternative to using COMMON.

OBJFUN must be declared as EXTERNAL in the (sub)program from which E04DGF is called,
and should be tested separately before being used in conjunction with E04DGF. See also the
optional parameter Verify in Section 11.2. Parameters denoted as Input must not be changed
by this procedure.

3: ITER — INTEGER Output

On exit: the total number of iterations performed.

4: OBJF — real Output

On exit: the value of the objective function at the final iterate.

E04DGF.2 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04DGF

5: OBJGRD(N) — real array Output

On exit: the gradient of the objective function at the final iterate (or its finite difference
approximation).

6: X(N) — real array Input/Output

On entry: an initial estimate of the solution.

On exit: the final estimate of the solution.

7: IWORK(N+1) — INTEGER array Workspace
8: WORK(13∗N) — real array Workspace

Note: the dimension of the array IUSER must be at least 1.

This array is not used by E04DGF, but is passed directly to routine OBJFUN and may be used to
supply information to OBJFUN.

9: IUSER(∗) — INTEGER array User Workspace

Note: the dimension of the array IUSER must be at least 1.

This array is not used by E04DGF, but is passed directly to routine OBJFUN and may be used to
supply information to OBJFUN.

10: USER(∗) — real array User Workspace

Note: the dimension of the array USER must be at least 1.

This array is not used by E04DGF, but is passed directly to routine OBJFUN and may be used to
supply information to OBJFUN.

11: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL �= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit.

E04DGF returns with IFAIL = 0 if the following three conditions are satisfied:

(i) Fk−1 − Fk < τF (1 + |Fk|)
(ii) ‖xk−1 − xk‖ <

√
τF (1 + ‖xk‖)

(iii) ‖gk‖ ≤ 3
√

τF (1 + |Fk|) or ‖gk‖ < εA

where τF is the value of the optional parameter Optimality Tolerance (default value = ε0.8; see
Section 11.2) and εA is the absolute error associated with computing the objective function.

For a full discussion on termination criteria see Gill et al.[2] Chapter 8.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings specified by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04DGF because the user set MODE < 0 in
routine OBJFUN. The value of IFAIL will be the same as the user’s setting of MODE.

[NP3390/19/pdf] E04DGF.3

E04DGF E04 – Minimizing or Maximizing a Function

IFAIL = 1

Not used by this routine.

IFAIL = 2

Not used by this routine.

IFAIL = 3

The limiting number of iterations (as determined by the optional parameter Iteration Limit (default
value = max(50, 5n); see Section 11.2) has been reached.

If the algorithm appears to be making satisfactory progress, then Iteration Limit may be too
small. If so, increase its value and rerun E04DGF. If the algorithm seems to be making little or no
progress, then the user should check for incorrect gradients as described below under IFAIL = 7.

IFAIL = 4

The computed upper bound on the step length taken during the linesearch was too small. A rerun
with an increased value of the optional parameterMaximum Step Length (ρ say) may be successful
unless ρ ≥ 1020 (the default value; see Section 11.2), in which case the current point cannot be
improved upon.

IFAIL = 5

Not used by this routine.

IFAIL = 6

The conditions for an acceptable solution (see parameter IFAIL in Section 5) have not all been
met, but a lower point could not be found.

If routine OBJFUN computes the objective function and its gradient correctly, then this may occur
because an overly stringent accuracy has been requested, i.e., the value of the optional parameter
Optimality Tolerance (default value = ε0.8; see Section 11.2) is too small or if αk
 0. In this case
the user should apply the three tests described above under IFAIL = 0 to determine whether or
not the final solution is acceptable. For a discussion of attainable accuracy see Gill and Murray
[2].

If many iterations have occurred in which essentially no progress has been made or E04DGF has
failed to move from the initial point, routine OBJFUN may be incorrect. The user should refer to
the comments below under IFAIL = 7 and check the gradients using the optional parameter Verify
(default value = 0; see Section 11.2). Unfortunately, there may be small errors in the objective
gradients that cannot be detected by the verification process. Finite-difference approximations to
first derivatives are catastrophically affected by even small inaccuracies.

IFAIL = 7

The user-provided derivatives of the objective function appear to be incorrect.

Large errors were found in the derivatives of the objective function. This value of IFAIL will occur
if the verification process indicated that at least one gradient element had no correct figures. The
user should refer to the printed output to determine which elements are suspected to be in error.

As a first step, the user should check that the code for the objective values is correct – for example,
by computing the function at a point where the correct value is known. However, care should be
taken that the chosen point fully tests the evaluation of the function. It is remarkable how often
the values x = 0 or x = 1 are used to test function evaluation procedures, and how often the
special properties of these numbers make the test meaningless.

Special care should be used in this test if computation of the objective function involves subsidiary
data communicated in COMMON storage. Although the first evaluation of the function may
be correct, subsequent calculations may be in error because some of the subsidiary data has
accidentally been overwritten.

E04DGF.4 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04DGF

Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the inaccurate
calculation of a subsidiary quantity, or the limited accuracy of data upon which the function
depends. A common error on machines where numerical calculations are usually performed in
double precision is to include even one single precision constant in the calculation of the function;
since some compilers do not convert such constants to double precision, half the correct figures
may be lost by such a seemingly trivial error.

IFAIL = 8

The gradient (g = ∂F
∂x) at the starting point x0 is ‘too small’. More precisely, the value of

g(x0)
T g(x0) is less than εm|F (x0)|, where εm is the machine precision.

The problem should be rerun from a different starting point.

IFAIL = 9

An input parameter is invalid.

7 Accuracy

On successful exit (IFAIL = 0) the accuracy of the solution will be as defined by the optional parameter
Optimality Tolerance (default value = ε0.8; see Section 11.2).

8 Further Comments

To evaluate an ‘acceptable’ set of finite difference intervals using E04XAF requires 2 function evaluations
per variable for a well-scaled problem and up to 6 function evaluations per variable for a badly scaled
problem.

8.1 Description of Printed Output

This section describes the (default) intermediate printout and final printout produced by E04DGF. The
level of printed output can be controlled by the user (see the description of the optional parameter Print
Level in Section 11.2). Note that the intermediate printout and final printout are produced only if Print
Level ≥ 10 (the default).

The following line of summary output (< 80 characters) is produced at every iteration. In all cases, the
values of the quantities are those in effect on completion of the given iteration.

Itn is the iteration count.
Step is the step αk taken along the computed search direction. On reasonably well-

behaved problems, the unit step (i.e., αk = 1) will be taken as the solution is
approached.

Nfun is the cumulated number of evaluations of the objective function needed forthe
linesearch. Evaluations needed for the verification of the gradients by finite
differences are not included. Nfun is printed as a guide to the amount of
work required for the linesearch. E04DGF will perform at most 11 function
evaluations per iteration.

Objective is the value of the objective function at xk.
Norm G is the Euclidean norm of the gradient of the objective function at xk.
Norm X is the Euclidean norm of xk.
Norm (X(k-1)-X(k)) is the Euclidean norm of xk−1 − xk.

The following describes the printout for each variable.

Variable gives the name (Varbl) and index j, for j = 1, 2, . . . , n of the variable.
Value is the value of the variable at the final iteration.
Gradient Value is the value of the gradient of the objective function with respect to the jth variable

at the final iteration.

[NP3390/19/pdf] E04DGF.5

E04DGF E04 – Minimizing or Maximizing a Function

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

9 Example

To find a minimum of the function

F = ex1(4x2
1 + 2x2

2 + 4x1x2 + 2x2 + 1).

The initial point is
x0 = (−1.0, 1.0)T ,

and F (x0) = 1.8394 (to five figures).

The optimal solution is
x∗ = (0.5,−1.0)T ,

and F (x∗) = 0.

The document for E04DJF includes an example program to solve the same problem using some of the
optional parameters described in Section 11. The remainder of this document is intended for more
advanced users. Section 10 contains a description of the algorithm which may be needed in order to
understand Section 11. Section 11 describes the optional parameters which may be set by calls to
E04DJF and/or E04DKF.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* E04DGF Example Program Text
* Mark 16 Revised. NAG Copyright 1993.
* .. Parameters ..

INTEGER NMAX
PARAMETER (NMAX=10)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
real OBJF
INTEGER I, IFAIL, ITER, N

* .. Local Arrays ..
real OBJGRD(NMAX), USER(1), WORK(13*NMAX), X(NMAX)
INTEGER IUSER(1), IWORK(NMAX+1)

* .. External Subroutines ..
EXTERNAL E04DGF, OBJFUN

* .. Executable Statements ..
WRITE (NOUT,*) ’E04DGF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*
* Read X from data file
*

READ (NIN,*) (X(I),I=1,N)
*
* Solve the problem
*

IFAIL = -1
*

E04DGF.6 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04DGF

CALL E04DGF(N,OBJFUN,ITER,OBJF,OBJGRD,X,IWORK,WORK,IUSER,USER,
+ IFAIL)

*
END IF
STOP
END

*
SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)

* Routine to evaluate F(x) and its 1st derivatives.
* .. Parameters ..

real ONE, TWO, FOUR
PARAMETER (ONE=1.0e0,TWO=2.0e0,FOUR=4.0e0)

* .. Scalar Arguments ..
real OBJF
INTEGER MODE, N, NSTATE

* .. Array Arguments ..
real OBJGRD(N), USER(*), X(N)
INTEGER IUSER(*)

* .. Local Scalars ..
real EXPX1, X1, X2

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
X1 = X(1)
X2 = X(2)

*
EXPX1 = EXP(X1)
OBJF = EXPX1*(FOUR*X1**2+TWO*X2**2+FOUR*X1*X2+TWO*X2+ONE)

*
IF (MODE.EQ.2) THEN

OBJGRD(1) = FOUR*EXPX1*(TWO*X1+X2) + OBJF
OBJGRD(2) = TWO*EXPX1*(TWO*X2+TWO*X1+ONE)

END IF
*

RETURN
END

9.2 Program Data

E04DGF Example Program Data
2 :Value of N

-1.0 1.0 :End of X

9.3 Program Results

E04DGF Example Program Results

*** E04DGF
*** Start of NAG Library implementation details ***

Implementation title: Generalised Base Version
Precision: FORTRAN double precision

Product Code: FLBAS19D
Mark: 19A

*** End of NAG Library implementation details ***

[NP3390/19/pdf] E04DGF.7

E04DGF E04 – Minimizing or Maximizing a Function

Parameters

Variables.............. 2

Maximum step length.... 1.00E+20 EPS (machine precision) 1.11E-16
Optimality tolerance... 3.26E-12 Linesearch tolerance... 9.00E-01

Est. opt. function val. None Function precision..... 4.37E-15
Verify level........... 0

Iteration limit........ 50 Print level............ 10

Verification of the objective gradients.
--

The objective gradients seem to be ok.

Directional derivative of the objective -1.47151776E-01
Difference approximation -1.47151796E-01

Itn Step Nfun Objective Norm G Norm X Norm (X(k-1)-X(k))
0 1 1.839397E+00 8.2E-01 1.4E+00
1 3.7E-01 3 1.724275E+00 2.8E-01 1.3E+00 3.0E-01
2 1.6E+01 8 6.083488E-02 9.2E-01 9.3E-01 2.2E+00
3 1.6E-03 14 5.367978E-02 1.0E+00 9.6E-01 3.7E-02
4 4.8E-01 16 1.783392E-04 5.8E-02 1.1E+00 1.6E-01
5 1.0E+00 17 1.671122E-05 2.0E-02 1.1E+00 6.7E-03
6 1.0E+00 18 1.101991E-07 1.7E-03 1.1E+00 2.4E-03
7 1.0E+00 19 2.332133E-09 1.8E-04 1.1E+00 1.5E-04
8 1.0E+00 20 9.130924E-11 3.3E-05 1.1E+00 3.0E-05
9 1.0E+00 21 1.085455E-12 4.7E-06 1.1E+00 7.0E-06

10 1.0E+00 22 5.308300E-14 1.2E-06 1.1E+00 6.4E-07

Exit from E04DGF after 10 iterations.

Variable Value Gradient value
Varbl 1 0.500000 9.1E-07
Varbl 2 -1.000000 8.3E-07

Exit E04DGF - Optimal solution found.

Final objective value = 0.5308300E-13

10 Algorithmic Details

This section contains a description of the method used by E04DGF.

E04DGF uses a pre-conditioned conjugate gradient method and is based upon algorithm PLMA as
described in Gill and Murray [1] and Gill et al. [2] Section 4.8.3.

The algorithm proceeds as follows:

Let x0 be a given starting point and let k denote the current iteration, starting with k = 0. The iteration
requires gk, the gradient vector evaluated at xk, the kth estimate of the minimum. At each iteration a
vector pk (known as the direction of search) is computed and the new estimate xk+1 is given by xk+αkpk

E04DGF.8 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04DGF

where αk (the step length) minimizes the function F (xk + αkpk) with respect to the scalar αk. A choice
of initial step α0 is taken as

α0 = min{1, 2× |Fk − Fest|/gT
k gk}

where Fest is a user-supplied estimate of the function value at the solution. If Fest is not specified, the
software always chooses the unit step length for α0. Subsequent step length estimates are computed using
cubic interpolation with safeguards.

A quasi-Newton method can be used to compute the search direction pk by updating the inverse of the
approximate Hessian (Hk) and computing

pk+1 = −Hk+1gk+1 (1)

The updating formula for the approximate inverse is given by

Hk+1 = Hk − 1
yT

k sk

(
HkyksT

k + skyT
k Hk

)
+

1
yT

k sk

(
1 +

yT
k Hkyk

yT
k sk

)
sksT

k (2)

where yk = gk−1 − gk and sk = xk+1 − xk = αkpk.

The method used by E04DGF to obtain the search direction is based upon computing pk+1 as −Hk+1gk+1

where Hk+1 is a matrix obtained by updating the identity matrix with a limited number of quasi-Newton
corrections. The storage of an n by n matrix is avoided by storing only the vectors that define the rank
two corrections – hence the term ‘limited-memory’ quasi-Newton method. The precise method depends
upon the number of updating vectors stored. For example, the direction obtained with the ‘one-step’
limited memory update is given by (1) using (2) with Hk equal to the identity matrix, viz.

pk+1 = −gk+1 +
1

yT
k sk

(
sT

k gk+1yk + yT
k gk+1sk

)
−

sT
k gk+1

yT
k sk

(
1 +

yT
k yk

yT
k sk

)
sk.

E04DGF uses a two-step method described in detail in Gill and Murray [1] in which restarts and pre-
conditioning are incorporated. Using a limited-memory quasi-Newton formula, such as the one above,
guarantees pk+1 to be a descent direction if all the inner products yT

k sk are positive for all vectors yk and
sk used in the updating formula.

11 Optional Parameters

Several optional parameters in E04DGF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal parameters of E04DGF these optional parameters have
associated default values that are appropriate for most problems. Therefore, the user need only specify
those optional parameters whose values are to be different from their default values. The remainder of
this section can be skipped by users who wish to use the default values for all optional parameters. A
complete list of optional parameters and their default values is given in Section 11.1.
Optional parameters may be specified by calling one, or both, of the routines E04DJF and E04DKF prior
to a call to E04DGF. E04DJF reads options from an external options file, with Begin and End as the first
and last lines respectively and each intermediate line defining a single optional parameter. For example,

Begin
Print Level = 1

End

The call

CALL E04DJF (IOPTNS, INFORM)

can then be used to read the file on unit IOPTNS. INFORM will be zero on successful exit. E04DJF
should be consulted for a full description of this method of supplying optional parameters.

E04DKF can be called to supply options directly, one call being necessary for each optional parameter.
For example,

[NP3390/19/pdf] E04DGF.9

E04DGF E04 – Minimizing or Maximizing a Function

CALL E04DKF (’Print Level = 1’)

E04DKF should be consulted for a full description of this method of supplying optional parameters.

All optional parameters not specified by the user are set to their default values. Optional parameters
specified by the user are unaltered by E04DGF (unless they define invalid values) and so remain in effect
for subsequent calls unless altered by the user.

11.1 Optional Parameter Checklist and Default Values

For easy reference, the following list shows all the valid keywords and their default values. The symbol ε
represents the machine precision (see X02AJF).

Optional Parameters Default Values
Defaults
Estimated optimal function value
Function precision ε0.9

Iteration limit max(50, 5n)
Linesearch tolerance 0.9
List/Nolist List
Maximum step length 1020

Optimality tolerance ε0.8

Print level 10
Start objective check at variable 1
Stop objective check at variable n
Verify level 0

11.2 Description of the Optional Parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the keyword,
any essential optional qualifiers, the default value, and the definition. The minimum abbreviation of
each keyword is underlined. If no characters of an optional qualifier are underlined, the qualifier may be
omitted. The letter a denotes a phrase (character string) that qualifies an option. The letters i and r
denote INTEGER and real values required with certain options. The number ε is a generic notation for
machine precision (see X02AJF), and εR denotes the relative precision of the objective function.

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Estimated Optimal Function Value r

This value of r specifies the user-supplied guess of the optimum objective function value Fest. This value
is used by E04DGF to calculate an initial step length α0 (see Section 10). If the value of r is not specified
by the user (the default), then this has the effect of setting α0 to unity. It should be noted that for badly
scaled functions a unit step along the steepest descent direction will often compute the objective function
at very large values of x.

Function Precision r Default = ε0.9

The parameter defines εR, which is intended to be a measure of the accuracy with which the problem
function F (x) can be computed. If r < ε or r ≥ 1, the default value is used.

The value of εR should reflect the relative precision of 1+ |F (x)|; i.e., εR acts as a relative precision when
|F | is large, and as an absolute precision when |F | is small. For example, if F (x) is typically of order
1000 and the first six significant digits are known to be correct, an appropriate value for εR would be
10−6. In contrast, if F (x) is typically of order 10−4 and the first six significant digits are known to be
correct, an appropriate value for εR would be 10−10. The choice of εR can be quite complicated for badly
scaled problems; see Chapter 8 of Gill and Murray [2], for a discussion of scaling techniques. The default
value is appropriate for most simple functions that are computed with full accuracy. However when the
accuracy of the computed function values is known to be significantly worse than full precision, the value
of εR should be large enough so that E04DGF will not attempt to distinguish between function values
that differ by less than the error inherent in the calculation.

E04DGF.10 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04DGF

Iteration Limit i Default = max(50, 5n)
Iters

Itns

The value of i specifies the maximum number of iterations allowed before termination. If i < 0, the
default value is used.

Problems whose Hessian matrices at the solution contain sets of clustered eigenvalues are likely to be
minimized in significantly fewer than n iterations. Problems without this property may require anything
between n and 5n iterations, with approximately 2n iterations being a common figure for moderately
difficult problems.

Linesearch Tolerance r Default = 0.9

The value r (0 ≤ r < 1) controls the accuracy with which the step α taken during each iteration
approximates a minimum of the function along the search direction (the smaller the value of r, the more
accurate the linesearch). The default value r = 0.9 requests an inaccurate search, and is appropriate for
most problems. A more accurate search may be appropriate when it is desirable to reduce the number
of iterations – for example, if the objective function is cheap to evaluate. If r < 0 or r ≥ 1, the default
value is used.

List Default = List
Nolist

Normally each optional parameter specification is printed as it is supplied. Nolistmay be used to suppress
the printing and List may be used to restore printing.

Maximum Step Length r Default = 1020

If r > 0, the maximum allowable step length for the linesearch is taken as min
(

1
X02AMF() ,

r
‖pk‖

)
. If r ≤ 0,

the default value is used.

Optimality Tolerance r Default = ε0.8
R

The parameter r (εR ≤ r < 1) specifies the accuracy to which the user wishes the final iterate to
approximate a solution of the problem. Broadly speaking, r indicates the number of correct figures
desired in the objective function at the solution. For example, if r is 10−6 and E04DGF terminates
successfully, the final value of F should have approximately six correct figures. E04DGF will terminate
successfully if the iterative sequence of x-values is judged to have converged and the final point satisfies
the termination criteria (as described under the parameter IFAIL in Section 5, where τF represents
Optimality Tolerance). If r < εR or r ≥ 1, the default value is used.

Print Level i Default = 10

The value i controls the amount of printout produced by E04DGF, as indicated below. A detailed
description of the printout is given in Section 8.1 (summary output at each iteration and the final
solution).

i Output
0 No output.
1 The final solution only.
5 One line of summary output (< 80 characters; see Section 8.1) for each iteration (no

printout of the final solution).
10 The final solution and one line of summary output for each iteration.

Start Objective Check at Variable i1 Default = 1
Stop Objective Check at Variable i2 Default = n

These keywords take effect only if Verify Level > 0 (see below). They may be used to control the
verification of gradient elements computed by routine OBJFUN. For example, if the first 30 elements
of the objective gradient appeared to be correct in an earlier run, so that only element 31 remains
questionable, it is reasonable to specify Start Objective Check at Variable 31. If the first 30 variables
appear linearly in the objective, so that the corresponding gradient elements are constant, the above
choice would also be appropriate.

[NP3390/19/pdf] E04DGF.11

E04DGF E04 – Minimizing or Maximizing a Function

If i1 ≤ 0 or i1 > max(1,min(n, i2)), the default value is used. If i2 ≤ 0 or i2 > n, the default value is
used.

Verify Level i Default = 0
Verify No
Verify Level −1
Verify Level 0
Verify

Verify Yes
Verify Objective Gradients

Verify Gradients

Verify Level 1

These keywords refer to finite-difference checks on the gradient elements computed by the user-provided
routine OBJFUN. It is possible to specify Verify Level in several ways, as indicated above. For example,
the objective gradient will be verified if Verify, Verify Yes, Verify Gradients, Verify Objective Gradients
or Verify Level = 1 is specified. If i = −1, then no checking will be performed. If i = 0 or 1, then
the objective gradient will be verified at the user-supplied initial estimate of the solution. If i = 0 only
a ‘cheap’ test will be performed, requiring one call to OBJFUN. If i = 1, a more reliable (but more
expensive) check will be made on individual gradient elements, within the ranges specified by the Start
and Stop keywords as described above. A result of the form OK or BAD? is printed by E04DGF to indicate
whether or not each element appears to be correct. If i < −1 or i > 1, the default value is used.

E04DGF.12 (last) [NP3390/19/pdf]

